Noise sensitivity from fractional
guery algorithms

Renan Gross, Weizmann Institute of Science



Boolean functions

A Boolean function is a function f: {—1,1}"- {—1,1}.



Boolean functions
A Boolean function is a function f: {—1,1}"— {—1,1}.
Example: Majority

n

f(x) = signz X;

=1




fi{—1,1"> {-1,1)

Percolation

egegesegedeceCedecedeced
“‘-““““‘“““‘-““““‘“““‘-““
| 2l nl 2l nd 2l dud 2l Jul 2nl 2ol 2l 2ol



fi{—1,1"> {-1,1)

Percolation

x=1,1,-11,-1,-1,-1,-1,-1,1,1,-1,1, -1, ...

egegesegedeceCedecedeced
“‘-““““‘“““‘-““““‘“““‘-““
| 2l nl 2l nd 2l dud 2l Jul 2nl 2ol 2l 2ol




fi{—1,1"> {-1,1)

Percolation

x=1,1,-11,-1,-1,-1,-1,-1,1,1,-1,1, -1, ...

egegesegedeceCedecedeced
“‘-““““‘“““‘-““““‘“““‘-““
| 2l nl 2l nd 2l dud 2l Jul 2nl 2ol 2l 2ol




fi{—1,1"> {-1,1)

Percolation

x=1,1,-11,-1,-1,-1,-1,-1,1,1,-1,1, -1, ...




fi{—1,1"> {-1,1)

Percolation

x=1,1,-11,-1,-1,-1,-1,-1,1,1,-1,1, -1, ...

A
b
& b
P Y o
S
y \ \
[ et > 2
X v A Y
b/ — b, o —
i r— 4 ¥ ¥
A N A
y 3 4 N_J i ,.
O . L =t
__J N / % i o
\ A 4 Y 1 Y,
\ — d L p
F . 3

F A " .
4 b § % i X i X
i = Y, : oy, ;
9 ; 3 .
/S N N P
y / % ¥ 4
i

Y
o
-

—4
A
X i %
hd 3
Fo
v h
-y v s

)




fi{—1,1"> {-1,1)

Percolation




fi{—1,1"> {-1,1)

Percolation




1 if green J crossing
—1 if yellow < crossing

|

f(x)

Percolation




Noise sensitivity




Noise sensitivity




Noise sensitivity




Noise sensitivity




Noise sensitivity




Noise sensitivity

Pick € > 0, and flip each bit with probability «.

Did the function’s value change?



Pick € > 0, and flip each bit with probability «.

Did the function’s value change?

Noise sensitivity



Pick € > 0, and flip each bit with probability «.

Did the function’s value change?

Noise sensitivity

o%eQe
00,0703 Yo 0®
- o o0 o
%0 0, % o o3 * .
oo o8t o
0y 8 630, o o ®
e ¢ Tag . 0%, %0 e*
%o aJe%%, , 000 o 0
e 3 909 ® %% o.0%" %9
e 0% ® o.0,0% ¢ %



Noise sensitivity

Pick € > 0, and flip each bit with probability «.

Did the function’s value change?

; ‘ h /A ‘ ‘ A d . ‘ ‘
il () s ()
“. s G200 ( B J



Noise sensitivity

...............
.................
........



Ity

1V

ISe sens|

NoO




Ity

1V

ISe sens|

NoO

%)
o ®
20 %% 2e%




Noise sensitivity

Definition: A sequence f,:{—1,1}" - {—1,1} of balanced

Boolean functions is called “noise sensitive” if for all € > 0,
111—{?0 E[fn() ()] =0,

where x is random and y is an &-noising of x.



Noise sensitivity

Definition: A sequence f,:{—1,1}" - {—1,1} of balanced

Boolean functions is called “noise sensitive” if for all € > 0,
AI_EEO E[fn() (] =0,

where x is random and y is an &-noising of x.

Is percolation crossing noise sensitive?

If so, how fast can € go to O with n?




Decision trees

x is uniform random, but hidden from you.

Reveal hexagons one by one, until f (x) is found.

o-ooo-“o.“‘-ooo.“o-ooo-ooo.“‘-ooo.«o.”o-“o-
838c8c8c8cscegecececacace
0%e%0%0 %0 %% %% "% %%



Decision trees

x is uniform random, but hidden from you.

Reveal hexagons one by one, until f (x) is found.

””‘-“““”oo““”“‘-«n“”oo“«””o-“n
”ooo-““““‘o”“”“o-“”““‘o““““o-“n
agegedegedele T



Decision trees

x is uniform random, but hidden from you.

Reveal hexagons one by one, until f (x) is found.

o-ooo-“o.“‘-ooo.“o-ooo-ooo.“‘-ooo.«o.”o-“o-
838c8c8c8cscegecececacace
0%e%0%0 %0 %% %% "% %%



Decision trees

x is uniform random, but hidden from you.

Reveal hexagons one by one, until f (x) is found.

o-ooo-“o.“‘-ooo.“o-ooo-ooo.“‘-ooo.«o.”o-“o-
838c8c8c8cscegecececacace
0%e%0%0 %0 %% %% "% %%



x is uniform random, but hidden from you.
Reveal hexagons one by one, until f (x) is found.

Decision trees

Reveal random bits



x is uniform random, but hidden from you.
Reveal hexagons one by one, until f (x) is found.

Decision trees

Reveal rows

Reveal random bits



x is uniform random, but hidden from you.
Reveal hexagons one by one, until f (x) is found.

Decision trees

Reveal rows Random floodfill

Reveal random bits



Decision trees

x is uniform random, but hidden from you.

Reveal hexagons one by one, until f (x) is found.

Reveal rows Random floodfill

Reveal random bits



The Schramm-Steif Theorem

Let f,,: {—1,1}" — {—1,1} be a sequence of Booelan functions.
Let T}, be a bit-reveal algorithm for f,,, and

d(n): = max §; = max IP|T,, reveals biti].
l l



The Schramm-Steif Theorem

Let f,,: {—1,1}" — {—1,1} be a sequence of Booelan functions.

Let T}, be a bit-reveal algorithm for f,,, and

d(n): = max §; = max IP|T,, reveals biti].
l l

Theorem: |If § — 0, then f,, is noise sensitive.




The Schramm-Steif Theorem

Let f,,: {—1,1}" — {—1,1} be a sequence of Booelan functions.
Let T}, be a bit-reveal algorithm for f,,, and

d(n): = max §; = max IP|T,, reveals biti].
l l

Theorem: |If § — 0, then f,, is noise sensitive.

The faster 6 — 0, the more noise sensitive it is!



The interface algorithm




The interface algorithm




The interface algorithm




The interface algorithm




The interface algorithm




The interface algorithm

¥



The interface algorithm

202020202020 2020%0%0 %0 -_-«o
0202020202020 20%0%0% - %

-

A )
ezesezece eceeceve” °
02020202020 %0 22 Ay @

a

0202020020500, 3= _of ‘v
0g0000000008080000 1" =34 To
202020202020 %0%02 ‘- .4 of
02a8 085080000, =] 0g
02020202 020700208 ° 2020
Segelelegese ¢+ ajeges “ele9
agededececel = _"%s 0036
agesededesece
2620202020




The interface algorithm




Fractional query algorithms



Fractional query algorithms

View 1:



Fractional query algorithms

View 1:

True x

Known x



Fractional query algorithms

View 1:

True x

Known x

afafafafafafs]a
%



Fractional query algorithms

View 1:

True x

Known x

7



Fractional query algorithms

View 1:

True x

Known x




Fractional query algorithms

View 1:

True x

Known x

View 2:




Fractional query algorithms

View 1:

True x

Known x

View 2:

Input x

7



Fractional query algorithms

View 1:

True x

Known x

View 2:

Input x




Fractional query algorithms

View 1:

True x

Known x

View 2:




Fractional query algorithms

Input x(t) is a stochastic process!



Fractional query algorithms

Input x(t) is a stochastic process!

@ o ofofojojoofo




Fractional query algorithms

Input x(t) is a stochastic process!
x(0)
x(1)




Fractional query algorithms

Input x(t) is a stochastic process!
x(0)
x(1)
x(2)




Fractional query algorithms

Input x(1) is a stochastic process!
x(0)
x(1)
x(2)

x(7)



Fractional query algorithms

Input x(1) is a stochastic process!
x(0)
x(1)
x(2)

x(T) 1

6; = P[bit i is queried] = E[x;(7)?]



Fractional query algorithms

Let £ > 0.



Fractional query algorithms

Let € > 0.

@ [ejofoofefofo o]




Fractional query algorithms

Let € > 0.

%




Fractional query algorithms

Let € > 0.

x(0)




Fractional query algorithms

Let € > 0.

x(0)

x(1)




Fractional query algorithms

Let € > 0.

x(0)

x(1)




Fractional query algorithms

Let € > 0.

x(0)

x(2)




Fractional query algorithms

Let € > 0.

x(0)

x(2)




Fractional query algorithms

Let € > 0.

x(0)




Fractional query algorithms

Let € > 0.

x(0)

Can only do this if x;(t) € (—1,1).



Computing with fractional inputs



Computing with fractional inputs
Every f:{—1,1}" - {—1,1} can be written as

F) = Z Fo [ [

LES

This is a real-valued polynomial.



Computing with fractional inputs
Every f:{—1,1}" - {—1,1} can be written as

F) = Z Fo [ [

LES

This is a real-valued polynomial.

FOX(E) = z fo| [xw

LES



Computing with fractional inputs
Every f:{—1,1}" - {—1,1} can be written as

F) = Z Fo [ [

LES

This is a real-valued polynomial.

FOX(E) = 2 fo| [xw

LES

In fact, it is an interpolation!



Computing with fractional inputs
Every f:{—1,1}" - {—1,1} can be written as

F) = Z Fo [ [

-1

IES
This is a real-valued polynomial. -1
FX()) = 2 fo| [xw
LES

In fact, it is an interpolation!

+1



Computing with fractional inputs

Every f:{—1,1}" - {—1,1} can be written as

F) = Z Fo [ [

LES

This is a real-valued polynomial.

FIX(®) = Z Fo| [xw @P 3/

LES

In fact, it is an interpolation!

-1

+1

O



Where is the unknown input?



Where is the unknown input?

Individual bits perform random walks



Where is the unknown input?

Individual bits perform random walks

In the end,

X(0) € {—1,1}"

This is the “final input”.



Where is the unknown input?

Individual bits perform random walks

In the end,
X() € {—1,1}"
This is the “final input”.
The current value gives a hint to the future:

1+ X;(t)

P[X;(c0) =11 X;(t) ] = >




Comparing with classical algorithms



Comparing with classical algorithms

For classical decision trees,

6; = PP[bit i is queried] = E[X;(7)?].

We define §; similarly for fractional algorithms.



Comparing with classical algorithms

For classical decision trees,

6; = P[bit i is queried] = E[X;(7)?].

We define 0; similarly for fractional algorithms.

. . ~2 2
Fact: min §; < min §; XxTeE X xwes

e—algs 2¢-algs

X —28 X x + 2¢
X—& x+¢



Comparing with classical algorithms

For classical decision trees,

6; = P[bit i is queried] = E[X;(7)?].

We define 0; similarly for fractional algorithms.

. . ~2 2
Fact: min §; < min §; XxTeE X xwes

e—algs 2¢-algs

X —28 X x + 2¢
X—& x+¢

Why this cost?

Fact: E[X;(7)%] = E[X;], = *E[#times i was chosen]



The Schramm-Steif Theorem

Let f,,: {—1,1}" — {—1,1} be a sequence of Booelan functions.
Let T}, be a bit-reveal algorithm for f,,, and

d(n): = max §; = max IP|T,, reveals biti].
l l

Theorem: |If § — 0, then f,, is noise sensitive.

The faster 6 — 0, the more noise sensitive it is!



The Schramm-Steif Theorem

Let f,,: {—1,1}" — {—1,1} be a sequence of Booelan functions.

fractional
Let T,, be a bit-reveal algorithm for f,,, and

d(n): = max §; = max IP|T,, reveals biti].
l l

Theorem: |If § — 0, then f,, is noise sensitive.

The faster 6 — 0, the more noise sensitive it is!



The Schramm-Steif Theorem

Let f,,: {—1,1}" — {—1,1} be a sequence of Booelan functions.

fractional
Let T,, be a bit-reveal algorithm for f,,, and

o(n): = max 5; = max E[X;(7)?].

Theorem: |If § — 0, then f,, is noise sensitive.

The faster 6 — 0, the more noise sensitive it is!



The Schramm

Stoif Theorem

Let f,,: {—1,1}" — {—1,1} be a sequence of Booelan functions.

fractional
Let T,, be a bit-reveal algorithm for f,,, and

o(n): = max 5; = max E[X;(7)?].

Theorem: |If § — 0, then f,, is noise sensitive.

The faster & — 0, the more noise sensitive it is!



Sending € = 0



Sending € = 0

let u.(x):[—1,1]"* - R = best alg when x(0) = x.



Sending € = 0

let u.(x):[—1,1]"* - R = best alg when x(0) = x.

_1

In which direction to go?




Sending € = 0

let u.(x):[—1,1]"* - R = best alg when x(0) = x.

_1

In which direction to go?




Sending € = 0

let u.(x):[—1,1]"* - R = best alg when x(0) = x.

In which direction to go?

u.(x + ce;) + u.(x — ge;)
2

Uu.(x) = min
l



Sending € = 0

let u.(x):[—1,1]"* - R = best alg when x(0) = x.

In which direction to go?

u.(x + ce;) + u.(x — ge;)
2

+ 2

Uu.(x) = min
l



u.(x + €e;) + us(x — €e;)
+ &2

Sendinge - 0 (ww=mn 2



us(x + €e;) + ug(x — €e;) 2)
+ &

Sendinge > 0 (wco=mp 2

Theorem: Define u = lir% U.. Then
E—

- 0%u
min— +2 = 0.

i 0x;

- “Axis-aligned Laplacian” equation.



u(x +ee;) + u.(x — €e;)

Sendinge > 0 (wco=mp 2

Theorem: Define u = lir% U.. Then
E—

- 0%u
min— +2 = 0.

i 0x;

- “Axis-aligned Laplacian” equation.

- u(0) might tell us something about 4!

- Solving a PDE can give us noise-sensitivity.

+ ez)



The OR function

OR: f(x) =1ifanyx; = 1.



The OR function

OR: f(x) =1ifanyx; = 1.

- Classical alg: just query bits. E[runtime]| = 2.



The OR function

OR: f(x) =1ifanyx; = 1.

- Classical alg: just query bits.

- Fractional alg: ??7?

1
0.8
0.6
0.4
0.2

0

-0.2 1 2 3 4
-0.4
-0.6
-0.8
-1

E[runtime| = 2.



The OR function

OR: f(x) =1ifanyx; = 1.




The OR function

OR: f(x) =1ifanyx; = 1.




The big question



The big question

*|sP = NP?



The big question
s N e b e

* |s there a class of functions f such that

o(f,¢)

,
lim hrgn—>lonf6(f 1) e

(specifically, what about percolation?)



Overview

* Boolean functions, noise-sensitivity,

revealment algorithms

* Fractional algorithms can do better

* A limiting partial differential equation




1
House Person Tree

https://practicalpie.com/house-person-tree-test/



Also a tree






