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Percolation

1 =
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𝑓 𝑥 = ቊ
1 if green ↕ crossing

−1 if yellow ↔ crossing
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Definition: A sequence  𝑓𝑛: −1,1
𝑛 → −1,1 of balanced 

Boolean functions is called “noise sensitive” if for all 휀 > 0, 

lim
𝑛→∞

𝔼[𝑓𝑛 𝑥 𝑓𝑛(𝑦)] = 0,

where 𝑥 is random and 𝑦 is an 휀-noising of 𝑥.

Is percolation crossing noise sensitive?

If so, how fast can 휀 go to 0 with 𝑛?



Decision trees

𝑥 is uniform random, but hidden from you.

Reveal hexagons one by one, until 𝑓(𝑥) is found.



Decision trees

𝑥 is uniform random, but hidden from you.

Reveal hexagons one by one, until 𝑓(𝑥) is found.



Decision trees

𝑥 is uniform random, but hidden from you.

Reveal hexagons one by one, until 𝑓(𝑥) is found.



Decision trees

𝑥 is uniform random, but hidden from you.

Reveal hexagons one by one, until 𝑓(𝑥) is found.



Decision trees

𝑥 is uniform random, but hidden from you.

Reveal hexagons one by one, until 𝑓(𝑥) is found.

Reveal random bits



Decision trees

𝑥 is uniform random, but hidden from you.

Reveal hexagons one by one, until 𝑓(𝑥) is found.

Reveal random bits Reveal rows



Decision trees

𝑥 is uniform random, but hidden from you.

Reveal hexagons one by one, until 𝑓(𝑥) is found.

Reveal random bits Reveal rows Random floodfill



Decision trees
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Reveal hexagons one by one, until 𝑓(𝑥) is found.

Reveal random bits Random floodfillReveal rows
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𝑛 → {−1,1} be a sequence of Booelan functions.

Let 𝑇𝑛 be a bit-reveal algorithm for 𝑓𝑛, and

𝛿(𝑛):= max
𝑖

𝛿𝑖 = max
𝑖

ℙ 𝑇𝑛 reveals bit 𝑖 .

Theorem:

The faster 𝛿 → 0, the more noise sensitive it is!

If 𝛿 → 0, then 𝑓𝑛 is noise sensitive.
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Fractional query algorithms
Input 𝒙(𝒕) is a stochastic process!

0 0 0 0 0 0 0 0𝑥(0)

0 0 0 1 0 0 0 0𝑥(1)

0 0 0 1 0 -1 0 0𝑥(2)

1 0 0 1 0 -1 -1 1𝑥(𝜏)

⋮

𝛿𝑖 = ℙ bit 𝑖 is queried = 𝔼[𝑥𝑖 𝜏
2]

⋮
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Let 휀 > 0.

Can only do this if 𝑥𝑖 𝑡 ∈ (−1,1). 
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Where is the unknown input?
Individual bits perform random walks

In the end,

𝑋 ∞ ∈ −1,1 𝑛

This is the “final input”.

The current value gives a hint to the future:

ℙ 𝑋𝑖 ∞ = 1 𝑋𝑖 𝑡 =
1 + 𝑋𝑖(𝑡)
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2 .

We define 𝛿𝑖 similarly for fractional algorithms.

Fact: min
𝜀−algs

𝛿𝑖 ≤ min
2𝜀−algs

𝛿𝑖

Why this cost?

Fact: 𝔼 𝑋𝑖 𝜏
2 = 𝔼 𝑋𝑖 𝜏 = 휀2𝔼[#times 𝑖 was chosen]

𝑥 𝑥 + 2휀𝑥 − 2휀

𝑥 𝑥 + 2휀𝑥 − 2휀

𝑥 − 휀 𝑥 + 휀
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𝑖
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𝑖
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Theorem:

The faster 𝛿 → 0, the more noise sensitive it is!

If 𝛿 → 0, then 𝑓𝑛 is noise sensitive.

fractional

The  Schramm
Steif

Theorem
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Sending 휀 → 0

Theorem: Define 𝑢 = lim
𝜀→0

𝑢𝜀. Then 

- “Axis-aligned Laplacian” equation.

- 𝑢 0 might tell us something about 𝛿!

- Solving a PDE can give us noise-sensitivity.

min
𝑖

𝜕2𝑢

𝜕𝑥𝑖
2 + 2 = 0 .

𝑢𝜀 𝑥 = min
𝑖

𝑢𝜀 𝑥 + 휀𝑒𝑖 + 𝑢𝜀 𝑥 − 휀𝑒𝑖
2

+ 휀2
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- Classical alg: just query bits.         𝔼 runtime = 2.

- Fractional alg: ???
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The big question

• Is 𝑃 = 𝑁𝑃?

• Is there a class of functions 𝑓 such that

lim
𝑛→∞

lim inf
𝜀→0

𝛿(𝑓, 휀)

𝛿(𝑓, 1)
= 0?

(specifically, what about percolation?)



Overview

• Boolean functions, noise-sensitivity, 

revealment algorithms

• Fractional algorithms can do better

• A limiting partial differential equation
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Also a tree




