
Renan Gross, Weizmann Institute of Science

Noise sensitivity from fractional
query algorithms

Boolean functions

A Boolean function is a function 𝑓: {−1,1}𝑛→ {−1,1}.

Boolean functions

A Boolean function is a function 𝑓: {−1,1}𝑛→ {−1,1}.

Example: Majority

𝑓 𝑥 = sign

𝑖=1

𝑛

𝑥𝑖

Percolation 𝑓: {−1,1}𝑛→ {−1,1}

Percolation 𝑓: {−1,1}𝑛→ {−1,1}

x = 1, 1, −1, 1, −1,−1,−1,−1,−1, 1, 1, −1, 1, −1,…

Percolation

1 =

−1 =

𝑓: {−1,1}𝑛→ {−1,1}

x = 1, 1, −1, 1, −1,−1,−1,−1,−1, 1, 1, −1, 1, −1,…

Percolation

1 =

−1 =

x = 1, 1, −1, 1, −1,−1,−1,−1,−1, 1, 1, −1, 1, −1,…

𝑓: {−1,1}𝑛→ {−1,1}

Percolation

1 =

−1 =

x = 1, 1, −1, 1, −1,−1,−1,−1,−1, 1, 1, −1, 1, −1,…

𝑓: {−1,1}𝑛→ {−1,1}

Percolation

1 =

−1 =

𝑓: {−1,1}𝑛→ {−1,1}

Percolation

1 =

−1 =

𝑓: {−1,1}𝑛→ {−1,1}

Percolation

1 =

−1 =

𝑓 𝑥 = ቊ
1 if green ↕ crossing

−1 if yellow ↔ crossing

Noise sensitivity

Noise sensitivity

Noise sensitivity

Noise sensitivity

Noise sensitivity

Noise sensitivity

Pick 휀 > 0, and flip each bit with probability 휀.

Did the function’s value change?

Noise sensitivity

Pick 휀 > 0, and flip each bit with probability 휀.

Did the function’s value change?

Noise sensitivity

Pick 휀 > 0, and flip each bit with probability 휀.

Did the function’s value change?

휀-noise

Noise sensitivity

Pick 휀 > 0, and flip each bit with probability 휀.

Did the function’s value change?

휀-noise

Noise sensitivity

Noise sensitivity

Noise sensitivity

Noise sensitivity

Definition: A sequence 𝑓𝑛: −1,1
𝑛 → −1,1 of balanced

Boolean functions is called “noise sensitive” if for all 휀 > 0,

lim
𝑛→∞

𝔼[𝑓𝑛 𝑥 𝑓𝑛(𝑦)] = 0,

where 𝑥 is random and 𝑦 is an 휀-noising of 𝑥.

Noise sensitivity

Definition: A sequence 𝑓𝑛: −1,1
𝑛 → −1,1 of balanced

Boolean functions is called “noise sensitive” if for all 휀 > 0,

lim
𝑛→∞

𝔼[𝑓𝑛 𝑥 𝑓𝑛(𝑦)] = 0,

where 𝑥 is random and 𝑦 is an 휀-noising of 𝑥.

Is percolation crossing noise sensitive?

If so, how fast can 휀 go to 0 with 𝑛?

Decision trees

𝑥 is uniform random, but hidden from you.

Reveal hexagons one by one, until 𝑓(𝑥) is found.

Decision trees

𝑥 is uniform random, but hidden from you.

Reveal hexagons one by one, until 𝑓(𝑥) is found.

Decision trees

𝑥 is uniform random, but hidden from you.

Reveal hexagons one by one, until 𝑓(𝑥) is found.

Decision trees

𝑥 is uniform random, but hidden from you.

Reveal hexagons one by one, until 𝑓(𝑥) is found.

Decision trees

𝑥 is uniform random, but hidden from you.

Reveal hexagons one by one, until 𝑓(𝑥) is found.

Reveal random bits

Decision trees

𝑥 is uniform random, but hidden from you.

Reveal hexagons one by one, until 𝑓(𝑥) is found.

Reveal random bits Reveal rows

Decision trees

𝑥 is uniform random, but hidden from you.

Reveal hexagons one by one, until 𝑓(𝑥) is found.

Reveal random bits Reveal rows Random floodfill

Decision trees

𝑥 is uniform random, but hidden from you.

Reveal hexagons one by one, until 𝑓(𝑥) is found.

Reveal random bits Random floodfillReveal rows

The Schramm-Steif Theorem

Let 𝑓𝑛: −1,1
𝑛 → {−1,1} be a sequence of Booelan functions.

Let 𝑇𝑛 be a bit-reveal algorithm for 𝑓𝑛, and

𝛿(𝑛):= max
𝑖

𝛿𝑖 = max
𝑖

ℙ 𝑇𝑛 reveals bit 𝑖 .

The Schramm-Steif Theorem

Let 𝑓𝑛: −1,1
𝑛 → {−1,1} be a sequence of Booelan functions.

Let 𝑇𝑛 be a bit-reveal algorithm for 𝑓𝑛, and

𝛿(𝑛):= max
𝑖

𝛿𝑖 = max
𝑖

ℙ 𝑇𝑛 reveals bit 𝑖 .

Theorem: If 𝛿 → 0, then 𝑓𝑛 is noise sensitive.

The Schramm-Steif Theorem

Let 𝑓𝑛: −1,1
𝑛 → {−1,1} be a sequence of Booelan functions.

Let 𝑇𝑛 be a bit-reveal algorithm for 𝑓𝑛, and

𝛿(𝑛):= max
𝑖

𝛿𝑖 = max
𝑖

ℙ 𝑇𝑛 reveals bit 𝑖 .

Theorem:

The faster 𝛿 → 0, the more noise sensitive it is!

If 𝛿 → 0, then 𝑓𝑛 is noise sensitive.

The interface algorithm

The interface algorithm

The interface algorithm

The interface algorithm

The interface algorithm

The interface algorithm

The interface algorithm

The interface algorithm

Fractional query algorithms

Fractional query algorithms
View 1:

1 -1 1 -1 -1 1 1 -1True 𝑥

Fractional query algorithms
View 1:

1 -1 1 -1 -1 1 1 -1

? ? ? ? ? ? ? ?

True 𝑥

Known 𝑥

Fractional query algorithms
View 1:

1 -1 1 -1 -1 1 1 -1

? ? ? ? ? ? ? ?

True 𝑥

Known 𝑥

Fractional query algorithms
View 1:

1 -1 1 -1 -1 1 1 -1

? ? ? ? ? ? ? ?

True 𝑥

Known 𝑥

Fractional query algorithms
View 1:

1 -1 1 -1 -1 1 1 -1

? ? ? ? ? ? ? ?

True 𝑥

Known 𝑥 1

Fractional query algorithms
View 1:

View 2:

1 -1 1 -1 -1 1 1 -1

? ? ? ? ? ? ? ?

True 𝑥

Known 𝑥 1

? ? ? ? ? ? ? ?Input 𝑥

Fractional query algorithms
View 1:

View 2:

1 -1 1 -1 -1 1 1 -1

? ? ? ? ? ? ? ?

True 𝑥

Known 𝑥 1

? ? ? ? ? ? ? ?Input 𝑥

Fractional query algorithms
View 1:

View 2:

1 -1 1 -1 -1 1 1 -1

? ? ? ? ? ? ? ?

True 𝑥

Known 𝑥 1

? ? ? ? ? ? ? ?Input 𝑥

𝑥𝑖 = ቊ
1 w.p. 1/2

−1 w.p. 1/2

Fractional query algorithms
View 1:

View 2:

1 -1 1 -1 -1 1 1 -1

? ? ? ? ? ? ? ?

True 𝑥

Known 𝑥 1

? ? ? ? ? ? ? ?Input 𝑥

𝑥𝑖 = ቊ
1 w.p. 1/2

−1 w.p. 1/2

1

Fractional query algorithms
Input 𝒙(𝒕) is a stochastic process!

Fractional query algorithms
Input 𝒙(𝒕) is a stochastic process!

0 0 0 0 0 0 0 0𝑥(0)

Fractional query algorithms
Input 𝒙(𝒕) is a stochastic process!

0 0 0 0 0 0 0 0𝑥(0)

0 0 0 1 0 0 0 0𝑥(1)

Fractional query algorithms
Input 𝒙(𝒕) is a stochastic process!

0 0 0 0 0 0 0 0𝑥(0)

0 0 0 1 0 0 0 0𝑥(1)

0 0 0 1 0 -1 0 0𝑥(2)

Fractional query algorithms
Input 𝒙(𝒕) is a stochastic process!

0 0 0 0 0 0 0 0𝑥(0)

0 0 0 1 0 0 0 0𝑥(1)

0 0 0 1 0 -1 0 0𝑥(2)

1 0 0 1 0 -1 -1 1𝑥(𝜏)

⋮ ⋮

Fractional query algorithms
Input 𝒙(𝒕) is a stochastic process!

0 0 0 0 0 0 0 0𝑥(0)

0 0 0 1 0 0 0 0𝑥(1)

0 0 0 1 0 -1 0 0𝑥(2)

1 0 0 1 0 -1 -1 1𝑥(𝜏)

⋮

𝛿𝑖 = ℙ bit 𝑖 is queried = 𝔼[𝑥𝑖 𝜏
2]

⋮

Fractional query algorithms
Let 휀 > 0.

Fractional query algorithms
Let 휀 > 0.

0 0 0 0 0 0 0 0𝑥(0)

Fractional query algorithms
Let 휀 > 0.

0 0 0 0 0 0 0 0𝑥(0)

Fractional query algorithms
Let 휀 > 0.

0 0 0 0 0 0 0 0𝑥(0)

𝑥𝑖 = 𝑥𝑖 + ቊ
ε w.p. 1/2

−휀 w.p. 1/2

Fractional query algorithms
Let 휀 > 0.

0 0 0 0 0 0 0 0𝑥(0)

𝑥𝑖 = 𝑥𝑖 + ቊ
ε w.p. 1/2

−휀 w.p. 1/2

0 0 휀 0 0 0 0𝑥(1) 0

Fractional query algorithms
Let 휀 > 0.

0 0 0 0 0 0 0 0𝑥(0)

𝑥𝑖 = 𝑥𝑖 + ቊ
ε w.p. 1/2

−휀 w.p. 1/2

0 0 휀 0 0 0 0𝑥(1) 0

Fractional query algorithms
Let 휀 > 0.

0 0 0 0 0 0 0 0𝑥(0)

𝑥𝑖 = 𝑥𝑖 + ቊ
ε w.p. 1/2

−휀 w.p. 1/2

0 0 휀 0 0 0 0𝑥(2) 0−휀

Fractional query algorithms
Let 휀 > 0.

0 0 0 0 0 0 0 0𝑥(0)

𝑥𝑖 = 𝑥𝑖 + ቊ
ε w.p. 1/2

−휀 w.p. 1/2

0 0 휀 0 0 0 0𝑥(2) 0−휀

Fractional query algorithms
Let 휀 > 0.

0 0 0 0 0 0 0 0𝑥(0)

𝑥𝑖 = 𝑥𝑖 + ቊ
ε w.p. 1/2

−휀 w.p. 1/2

0 0 휀 0 0 0 0𝑥(3) 0−휀0

Fractional query algorithms
Let 휀 > 0.

Can only do this if 𝑥𝑖 𝑡 ∈ (−1,1).

0 0 0 0 0 0 0 0𝑥(0)

𝑥𝑖 = 𝑥𝑖 + ቊ
ε w.p. 1/2

−휀 w.p. 1/2

0 0 휀 0 0 0 0𝑥(3) 0−휀0

Computing with fractional inputs

Computing with fractional inputs
Every 𝑓: −1,1 𝑛 → −1,1 can be written as

This is a real-valued polynomial.

𝑓 𝑥 =

𝑆⊆[𝑛]

መ𝑓 𝑆 ෑ

𝑖∈𝑆

𝑥𝑖

Computing with fractional inputs
Every 𝑓: −1,1 𝑛 → −1,1 can be written as

This is a real-valued polynomial.

𝑓 𝑥 =

𝑆⊆[𝑛]

መ𝑓 𝑆 ෑ

𝑖∈𝑆

𝑥𝑖

𝑓 𝑋(𝑡) =

𝑆⊆[𝑛]

መ𝑓 𝑆 ෑ

𝑖∈𝑆

𝑋𝑖(𝑡)

Computing with fractional inputs
Every 𝑓: −1,1 𝑛 → −1,1 can be written as

This is a real-valued polynomial.

In fact, it is an interpolation!

𝑓 𝑥 =

𝑆⊆[𝑛]

መ𝑓 𝑆 ෑ

𝑖∈𝑆

𝑥𝑖

𝑓 𝑋(𝑡) =

𝑆⊆[𝑛]

መ𝑓 𝑆 ෑ

𝑖∈𝑆

𝑋𝑖(𝑡)

Computing with fractional inputs
Every 𝑓: −1,1 𝑛 → −1,1 can be written as

This is a real-valued polynomial.

In fact, it is an interpolation!

+1

−1

−1

−1

𝑓 𝑥 =

𝑆⊆[𝑛]

መ𝑓 𝑆 ෑ

𝑖∈𝑆

𝑥𝑖

𝑓 𝑋(𝑡) =

𝑆⊆[𝑛]

መ𝑓 𝑆 ෑ

𝑖∈𝑆

𝑋𝑖(𝑡)

Computing with fractional inputs
Every 𝑓: −1,1 𝑛 → −1,1 can be written as

This is a real-valued polynomial.

In fact, it is an interpolation!

+1

−1

−1

−1

𝑓 𝑥 =

𝑆⊆[𝑛]

መ𝑓 𝑆 ෑ

𝑖∈𝑆

𝑥𝑖

𝑓 𝑋(𝑡) =

𝑆⊆[𝑛]

መ𝑓 𝑆 ෑ

𝑖∈𝑆

𝑋𝑖(𝑡) 𝑋(𝜏)

Where is the unknown input?

Where is the unknown input?
Individual bits perform random walks

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-3 2 7 12 17

Where is the unknown input?
Individual bits perform random walks

In the end,

𝑋 ∞ ∈ −1,1 𝑛

This is the “final input”. -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-3 2 7 12 17

Where is the unknown input?
Individual bits perform random walks

In the end,

𝑋 ∞ ∈ −1,1 𝑛

This is the “final input”.

The current value gives a hint to the future:

ℙ 𝑋𝑖 ∞ = 1 𝑋𝑖 𝑡 =
1 + 𝑋𝑖(𝑡)

2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-3 2 7 12 17

Comparing with classical algorithms

Comparing with classical algorithms
For classical decision trees,

𝛿𝑖 = ℙ bit 𝑖 is queried = 𝔼 𝑋𝑖 𝜏
2 .

We define 𝛿𝑖 similarly for fractional algorithms.

Comparing with classical algorithms
For classical decision trees,

𝛿𝑖 = ℙ bit 𝑖 is queried = 𝔼 𝑋𝑖 𝜏
2 .

We define 𝛿𝑖 similarly for fractional algorithms.

Fact: min
𝜀−algs

𝛿𝑖 ≤ min
2𝜀−algs

𝛿𝑖
𝑥 𝑥 + 2휀𝑥 − 2휀

𝑥 𝑥 + 2휀𝑥 − 2휀

𝑥 − 휀 𝑥 + 휀

Comparing with classical algorithms
For classical decision trees,

𝛿𝑖 = ℙ bit 𝑖 is queried = 𝔼 𝑋𝑖 𝜏
2 .

We define 𝛿𝑖 similarly for fractional algorithms.

Fact: min
𝜀−algs

𝛿𝑖 ≤ min
2𝜀−algs

𝛿𝑖

Why this cost?

Fact: 𝔼 𝑋𝑖 𝜏
2 = 𝔼 𝑋𝑖 𝜏 = 휀2𝔼[#times 𝑖 was chosen]

𝑥 𝑥 + 2휀𝑥 − 2휀

𝑥 𝑥 + 2휀𝑥 − 2휀

𝑥 − 휀 𝑥 + 휀

The Schramm-Steif Theorem

Let 𝑓𝑛: −1,1
𝑛 → {−1,1} be a sequence of Booelan functions.

Let 𝑇𝑛 be a bit-reveal algorithm for 𝑓𝑛, and

𝛿(𝑛):= max
𝑖

𝛿𝑖 = max
𝑖

ℙ 𝑇𝑛 reveals bit 𝑖 .

Theorem:

The faster 𝛿 → 0, the more noise sensitive it is!

If 𝛿 → 0, then 𝑓𝑛 is noise sensitive.

The Schramm-Steif Theorem

Let 𝑓𝑛: −1,1
𝑛 → {−1,1} be a sequence of Booelan functions.

Let 𝑇𝑛 be a bit-reveal algorithm for 𝑓𝑛, and

𝛿(𝑛):= max
𝑖

𝛿𝑖 = max
𝑖

ℙ 𝑇𝑛 reveals bit 𝑖 .

Theorem:

The faster 𝛿 → 0, the more noise sensitive it is!

If 𝛿 → 0, then 𝑓𝑛 is noise sensitive.

fractional

The Schramm-Steif Theorem

Let 𝑓𝑛: −1,1
𝑛 → {−1,1} be a sequence of Booelan functions.

Let 𝑇𝑛 be a bit-reveal algorithm for 𝑓𝑛, and

𝛿(𝑛):= max
𝑖

𝛿𝑖 = max
𝑖

𝔼[𝑋𝑖 𝜏
2] .

Theorem:

The faster 𝛿 → 0, the more noise sensitive it is!

If 𝛿 → 0, then 𝑓𝑛 is noise sensitive.

fractional

Let 𝑓𝑛: −1,1
𝑛 → {−1,1} be a sequence of Booelan functions.

Let 𝑇𝑛 be a bit-reveal algorithm for 𝑓𝑛, and

𝛿(𝑛):= max
𝑖

𝛿𝑖 = max
𝑖

𝔼[𝑋𝑖 𝜏
2] .

Theorem:

The faster 𝛿 → 0, the more noise sensitive it is!

If 𝛿 → 0, then 𝑓𝑛 is noise sensitive.

fractional

The Schramm
Steif

Theorem

Sending 휀 → 0

Sending 휀 → 0
Let 𝑢𝜀 𝑥 : −1,1 𝑛 → ℝ = best alg when 𝑥 0 = 𝑥.

Sending 휀 → 0
Let 𝑢𝜀 𝑥 : −1,1 𝑛 → ℝ = best alg when 𝑥 0 = 𝑥.

In which direction to go?

+1

−1

−1

−1

𝑥

Sending 휀 → 0
Let 𝑢𝜀 𝑥 : −1,1 𝑛 → ℝ = best alg when 𝑥 0 = 𝑥.

In which direction to go?

+1

−1

−1

−1

𝑥

Sending 휀 → 0
Let 𝑢𝜀 𝑥 : −1,1 𝑛 → ℝ = best alg when 𝑥 0 = 𝑥.

In which direction to go?

+1

−1

−1

−1

𝑥

𝑢𝜀 𝑥 = min
𝑖

𝑢𝜀 𝑥 + 휀𝑒𝑖 + 𝑢𝜀 𝑥 − 휀𝑒𝑖
2

Sending 휀 → 0
Let 𝑢𝜀 𝑥 : −1,1 𝑛 → ℝ = best alg when 𝑥 0 = 𝑥.

In which direction to go?

+1

−1

−1

−1

𝑥

𝑢𝜀 𝑥 = min
𝑖

𝑢𝜀 𝑥 + 휀𝑒𝑖 + 𝑢𝜀 𝑥 − 휀𝑒𝑖
2

+휀2

Sending 휀 → 0 𝑢𝜀 𝑥 = min
𝑖

𝑢𝜀 𝑥 + 휀𝑒𝑖 + 𝑢𝜀 𝑥 − 휀𝑒𝑖
2

+ 휀2

Sending 휀 → 0

Theorem: Define 𝑢 = lim
𝜀→0

𝑢𝜀. Then

- “Axis-aligned Laplacian” equation.

min
𝑖

𝜕2𝑢

𝜕𝑥𝑖
2 + 2 = 0 .

𝑢𝜀 𝑥 = min
𝑖

𝑢𝜀 𝑥 + 휀𝑒𝑖 + 𝑢𝜀 𝑥 − 휀𝑒𝑖
2

+ 휀2

Sending 휀 → 0

Theorem: Define 𝑢 = lim
𝜀→0

𝑢𝜀. Then

- “Axis-aligned Laplacian” equation.

- 𝑢 0 might tell us something about 𝛿!

- Solving a PDE can give us noise-sensitivity.

min
𝑖

𝜕2𝑢

𝜕𝑥𝑖
2 + 2 = 0 .

𝑢𝜀 𝑥 = min
𝑖

𝑢𝜀 𝑥 + 휀𝑒𝑖 + 𝑢𝜀 𝑥 − 휀𝑒𝑖
2

+ 휀2

The OR function
OR: 𝑓 𝑥 = 1 if any 𝑥𝑖 = 1.

The OR function
OR: 𝑓 𝑥 = 1 if any 𝑥𝑖 = 1.

- Classical alg: just query bits. 𝔼 runtime = 2.

The OR function
OR: 𝑓 𝑥 = 1 if any 𝑥𝑖 = 1.

- Classical alg: just query bits. 𝔼 runtime = 2.

- Fractional alg: ???

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

The OR function
OR: 𝑓 𝑥 = 1 if any 𝑥𝑖 = 1.

The OR function
OR: 𝑓 𝑥 = 1 if any 𝑥𝑖 = 1.

The big question

The big question

• Is 𝑃 = 𝑁𝑃?

The big question

• Is 𝑃 = 𝑁𝑃?

• Is there a class of functions 𝑓 such that

lim
𝑛→∞

lim inf
𝜀→0

𝛿(𝑓, 휀)

𝛿(𝑓, 1)
= 0?

(specifically, what about percolation?)

Overview

• Boolean functions, noise-sensitivity,

revealment algorithms

• Fractional algorithms can do better

• A limiting partial differential equation

https://practicalpie.com/house-person-tree-test/

House Person Tree

Also a tree

