Noise sensitivity from fractional query algorithms

Renan Gross, Weizmann Institute of Science

Boolean functions

A Boolean function is a function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$.

Boolean functions

A Boolean function is a function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$.

Example: Majority

$$
f(x)=\operatorname{sign} \sum_{i=1}^{n} x_{i}
$$

Percolation

$$
f:\{-1,1\}^{n} \rightarrow\{-1,1\}
$$

Percolation
 $$
f:\{-1,1\}^{n} \rightarrow\{-1,1\}
$$

$$
\mathrm{x}=1,1,-1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1, \ldots
$$

Percolation
 $$
f:\{-1,1\}^{n} \rightarrow\{-1,1\}
$$

$$
\mathrm{x}=1,1,-1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1, \ldots
$$

Percolation $\quad f:\{-1,1\}^{n} \rightarrow\{-1,1\}$

$$
\mathrm{x}=1,1,-1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1, \ldots
$$

Percolation $\quad f:\{-1,1\}^{n} \rightarrow\{-1,1\}$

$$
\mathrm{x}=1,1,-1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1, \ldots
$$

Percolation

$$
f:\{-1,1\}^{n} \rightarrow\{-1,1\}
$$

Percolation

$$
f:\{-1,1\}^{n} \rightarrow\{-1,1\}
$$

Percolation
 $$
f(x)=\left\{\begin{aligned} 1 & \text { if green } \uparrow \text { crossing } \\ -1 & \text { if yellow } \leftrightarrow \text { crossing } \end{aligned}\right.
$$

Noise sensitivity

Noise sensitivity

Noise sensitivity

Noise sensitivity

Noise sensitivity

Noise sensitivity

Pick $\varepsilon>0$, and flip each bit with probability ε.
Did the function's value change?

Noise sensitivity

Pick $\varepsilon>0$, and flip each bit with probability ε.
Did the function's value change?

Noise sensitivity

Pick $\varepsilon>0$, and flip each bit with probability ε.
Did the function's value change?

ε-noise

Noise sensitivity

Pick $\varepsilon>0$, and flip each bit with probability ε.
Did the function's value change?

ε-noise

Noise sensitivity

Noise sensitivity

Noise sensitivity

Noise sensitivity

Definition: A sequence $f_{n}:\{-1,1\}^{n} \rightarrow\{-1,1\}$ of balanced Boolean functions is called "noise sensitive" if for all $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[f_{n}(x) f_{n}(y)\right]=0,
$$

where x is random and y is an ε-noising of x.

Noise sensitivity

Definition: A sequence $f_{n}:\{-1,1\}^{n} \rightarrow\{-1,1\}$ of balanced Boolean functions is called "noise sensitive" if for all $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[f_{n}(x) f_{n}(y)\right]=0
$$

where x is random and y is an ε-noising of x.

Is percolation crossing noise sensitive?
If so, how fast can ε go to 0 with n ?

Decision trees

x is uniform random, but hidden from you. Reveal hexagons one by one, until $f(x)$ is found.

Decision trees

x is uniform random, but hidden from you. Reveal hexagons one by one, until $f(x)$ is found.

Decision trees

x is uniform random, but hidden from you. Reveal hexagons one by one, until $f(x)$ is found.

Decision trees

x is uniform random, but hidden from you. Reveal hexagons one by one, until $f(x)$ is found.

Decision trees

x is uniform random, but hidden from you. Reveal hexagons one by one, until $f(x)$ is found.

Reveal random bits

Decision trees

x is uniform random, but hidden from you. Reveal hexagons one by one, until $f(x)$ is found.

Reveal random bits

Reveal rows

Decision trees

x is uniform random, but hidden from you. Reveal hexagons one by one, until $f(x)$ is found.

Reveal random bits

Reveal rows

Random floodfill

Decision trees

x is uniform random, but hidden from you. Reveal hexagons one by one, until $f(x)$ is found.

Reveal random bits

Reveal rows

Random floodfill

The Schramm-Steif Theorem

Let $f_{n}:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be a sequence of Booelan functions.
Let T_{n} be a bit-reveal algorithm for f_{n}, and

$$
\delta(n):=\max _{i} \delta_{i}=\max _{i} \mathbb{P}\left[T_{n} \text { reveals bit } i\right] .
$$

The Schramm-Steif Theorem

Let $f_{n}:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be a sequence of Booelan functions.
Let T_{n} be a bit-reveal algorithm for f_{n}, and

$$
\delta(n):=\max _{i} \delta_{i}=\max _{i} \mathbb{P}\left[T_{n} \text { reveals bit } i\right] .
$$

Theorem: If $\delta \rightarrow 0$, then f_{n} is noise sensitive.

The Schramm-Steif Theorem

Let $f_{n}:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be a sequence of Booelan functions.
Let T_{n} be a bit-reveal algorithm for f_{n}, and

$$
\delta(n):=\max _{i} \delta_{i}=\max _{i} \mathbb{P}\left[T_{n} \text { reveals bit } i\right] .
$$

Theorem: If $\delta \rightarrow 0$, then f_{n} is noise sensitive.

The faster $\delta \rightarrow 0$, the more noise sensitive it is!

The interface algorithm

Fractional query algorithms

Fractional query algorithms

View 1:

| True x | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Fractional query algorithms

View 1:

True x

$$
\begin{array}{ll|llllll}
1 & -1 & 1 & -1 & -1 & 1 & 1 & -1
\end{array}
$$

Known x
? ? \quad ? \quad ? \quad ? $\quad ? \quad$?

Fractional query algorithms

View 1:

True x

$$
\begin{array}{ll|llllll}
1 & -1 & 1 & -1 & -1 & 1 & 1 & -1
\end{array}
$$

Known x

Fractional query algorithms

View 1:

True x

Fractional query algorithms

View 1:

True x

$$
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline 1 & -1 & 1 & -1 & -1 & 1 & 1 & -1 \\
\hline ? & ? & & & ? & ? & ? & ? \\
\hline ? & ? & ? & ? & \\
\hline
\end{array}
$$

Known x

Fractional query algorithms

 View 1:True x

Known x \square

View 2:

Input x

$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$

Fractional query algorithms

View 1:

True x

Known x

View 2:

Input x

Fractional query algorithms

View 1:

True x

Known x

View 2:

Input x

Fractional query algorithms

View 1:

True x

Known x

1	-1	1	-1	-1	1	1	-1
$?$	$?$	1	$?$	$?$	$?$	$?$	$?$

View 2:

Input x

$$
\begin{array}{rl}
? & ? \\
? & ?
\end{array} ? \quad ? \quad ? \quad ?
$$

Fractional query algorithms Input $\boldsymbol{x}(\boldsymbol{t})$ is a stochastic process!

Fractional query algorithms

 Input $\boldsymbol{x}(\boldsymbol{t})$ is a stochastic process!| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Fractional query algorithms

 Input $\boldsymbol{x}(\boldsymbol{t})$ is a stochastic process!| $x(0)$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $x(1)$ | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |

Fractional query algorithms Input $\boldsymbol{x}(\boldsymbol{t})$ is a stochastic process!

$x(0)$	0	0	0	0	0	0	0	0
$x(1)$	0	0	0	1	0	0	0	0
$x(2)$	0	0	0	1	0	-1	0	0

Fractional query algorithms

 Input $\boldsymbol{x}(\boldsymbol{t})$ is a stochastic process!| $x(0)$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x(1)$ | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| $x(2)$
 \vdots | 0 | 0 | 0 | 1 | 0 | -1 | 0 | 0 |
| $x(\tau)$ | | 1 | 0 | 0 | 1 | 0 | -1 | -1 |$|$| 1 |
| :---: |

Fractional query algorithms

 Input $\boldsymbol{x}(\boldsymbol{t})$ is a stochastic process!| $x(0)$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x(1)$ | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| $x(2)$ | 0 | 0 | 0 | 1 | 0 | -1 | 0 | 0 |
| \vdots | | | | \vdots | | | | |
| $x(\tau)$ | 1 | 0 | 0 | 1 | 0 | -1 | -1 | 1 |

Fractional query algorithms

 Let $\varepsilon>0$.
Fractional query algorithms

 Let $\varepsilon>0$. $x(0)$
Fractional query algorithms

 Let $\varepsilon>0$. $x(0)$
Fractional query algorithms

 Let $\varepsilon>0$. $x(0)$
Fractional query algorithms

Let $\varepsilon>0$. $x(0)$

0	0	0	0	0	0	0	0	
	$x_{i}=x_{i}+\left\{\begin{array}{r} \varepsilon \text { w.p. } 1 / 2 \\ -\varepsilon \text { w.p. } 1 / 2 \end{array}\right.$							

$x(1)$

0	0	ε	0	0	0	0	0

Fractional query algorithms

Let $\varepsilon>0$. $x(0)$

0	0	0	0	0	0	0	0	
	$x_{i}=x_{i}+\left\{\begin{array}{r} \varepsilon \text { w.p. } 1 / 2 \\ -\varepsilon \text { w.p. } 1 / 2 \end{array}\right.$							

$x(1)$

0	0	ε	0	0	0	0	0

Fractional query algorithms

Let $\varepsilon>0$. $x(0)$

0	0	0	0	0	0	0	0	
	$x_{i}=x_{i}+\left\{\begin{array}{r} \varepsilon \text { w.p. } 1 / 2 \\ -\varepsilon \text { w.p. } 1 / 2 \end{array}\right.$							

$x(2)$

0	0	ε	$-\varepsilon$	0	0	0	0

Fractional query algorithms

Let $\varepsilon>0$. $x(0)$

0	0	0	0	0	0	0	0	
	$x_{i}=x_{i}+\left\{\begin{array}{r} \varepsilon \text { w.p. } 1 / 2 \\ -\varepsilon \text { w.p. } 1 / 2 \end{array}\right.$							

$x(2)$
$\begin{array}{ll}0 & 0 \\ & \end{array}$

Fractional query algorithms

Let $\varepsilon>0$. $x(0)$

0	0	0	0	0	0	0	0	
	$x_{i}=x_{i}+\left\{\begin{array}{r} \varepsilon \text { w.p. } 1 / 2 \\ -\varepsilon \text { w.p. } 1 / 2 \end{array}\right.$							

$x(3)$

0	0	0	$-\varepsilon$	0	0	0	0

Fractional query algorithms

Let $\varepsilon>0$. $x(0)$

$x(3)$

0	0	0	$-\varepsilon$	0	0	0

Can only do this if $x_{i}(t) \in(-1,1)$.

Computing with fractional inputs

Computing with fractional inputs

Every $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ can be written as

$$
f(x)=\sum_{S \subseteq[n]} \hat{f}(S) \prod_{i \in S} x_{i}
$$

This is a real-valued polynomial.

Computing with fractional inputs

Every $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ can be written as

$$
f(x)=\sum_{S \subseteq[n]} \hat{f}(S) \prod_{i \in S} x_{i}
$$

This is a real-valued polynomial.

$$
f(X(t))=\sum_{S \subseteq[n]} \hat{f}(S) \prod_{i \in S} X_{i}(t)
$$

Computing with fractional inputs

Every $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ can be written as

$$
f(x)=\sum_{S \subseteq[n]} \hat{f}(S) \prod_{i \in S} x_{i}
$$

This is a real-valued polynomial.

$$
f(X(t))=\sum_{S \subseteq[n]} \hat{f}(S) \prod_{i \in S} X_{i}(t)
$$

In fact, it is an interpolation!

Computing with fractional inputs

Every $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ can be written as

$$
f(x)=\sum_{S \subseteq[n]} \hat{f}(S) \prod_{i \in S} x_{i}
$$

This is a real-valued polynomial.

$$
f(X(t))=\sum_{S \subseteq[n]} \hat{f}(S) \prod_{i \in S} X_{i}(t)
$$

In fact, it is an interpolation!

Computing with fractional inputs

Every $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ can be written as

$$
f(x)=\sum_{S \subseteq[n]} \hat{f}(S) \prod_{i \in S} x_{i}
$$

This is a real-valued polynomial.

$$
f(X(t))=\sum_{S \subseteq[n]} \hat{f}(S) \prod_{i \in S} X_{i}(t)
$$

In fact, it is an interpolation!

Where is the unknown input?

Where is the unknown input?

Individual bits perform random walks

Where is the unknown input?

Individual bits perform random walks
In the end,

$$
X(\infty) \in\{-1,1\}^{n}
$$

This is the "final input".

Where is the unknown input?

Individual bits perform random walks
In the end,

$$
X(\infty) \in\{-1,1\}^{n}
$$

This is the "final input".

The current value gives a hint to the future:

$$
\mathbb{P}\left[X_{i}(\infty)=1 \mid X_{i}(t)\right]=\frac{1+X_{i}(t)}{2}
$$

Comparing with classical algorithms

Comparing with classical algorithms

For classical decision trees,

$$
\delta_{i}=\mathbb{P}[\text { bit } i \text { is queried }]=\mathbb{E}\left[X_{i}(\tau)^{2}\right]
$$

We define δ_{i} similarly for fractional algorithms.

Comparing with classical algorithms

 For classical decision trees,$$
\delta_{i}=\mathbb{P}[\text { bit } i \text { is queried }]=\mathbb{E}\left[X_{i}(\tau)^{2}\right] .
$$

We define δ_{i} similarly for fractional algorithms.

Fact: $\min _{\varepsilon-\text { algs }} \delta_{i} \leq \min _{2 \varepsilon-\text { algs }} \delta_{i}$

$$
\begin{gathered}
x-2 \varepsilon \quad x \quad x+2 \varepsilon \\
x-2 \varepsilon \quad x \quad x+2 \varepsilon \\
x-\varepsilon \quad x+\varepsilon
\end{gathered}
$$

Comparing with classical algorithms

For classical decision trees,

$$
\delta_{i}=\mathbb{P}[\text { bit } i \text { is queried }]=\mathbb{E}\left[X_{i}(\tau)^{2}\right] .
$$

We define δ_{i} similarly for fractional algorithms.

Fact: $\min _{\varepsilon-\text { algs }} \delta_{i} \leq \min _{2 \varepsilon-\text { algs }} \delta_{i}$

Why this cost?

$$
\begin{array}{cc}
x-2 \varepsilon \quad x \quad x+2 \varepsilon \\
x-2 \varepsilon \quad x \quad x+2 \varepsilon \\
x-\varepsilon \quad x+\varepsilon
\end{array}
$$

Fact: $\mathbb{E}\left[X_{i}(\tau)^{2}\right]=\mathbb{E}\left[X_{i}\right]_{\tau}=\varepsilon^{2} \mathbb{E}[\#$ times i was chosen $]$

The Schramm-Steif Theorem

Let $f_{n}:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be a sequence of Booelan functions.
Let T_{n} be a bit-reveal algorithm for f_{n}, and

$$
\delta(n):=\max _{i} \delta_{i}=\max _{i} \mathbb{P}\left[T_{n} \text { reveals bit } i\right] .
$$

Theorem: If $\delta \rightarrow 0$, then f_{n} is noise sensitive.

The faster $\delta \rightarrow 0$, the more noise sensitive it is!

The Schramm-Steif Theorem

Let $f_{n}:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be a sequence of Booelan functions.
fractional
Let T_{n} be a bit-reveal algorithm for f_{n}, and

$$
\delta(n):=\max _{i} \delta_{i}=\max _{i} \mathbb{P}\left[T_{n} \text { reveals bit } i\right] .
$$

Theorem: If $\delta \rightarrow 0$, then f_{n} is noise sensitive.

The faster $\delta \rightarrow 0$, the more noise sensitive it is!

The Schramm-Steif Theorem

Let $f_{n}:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be a sequence of Booelan functions.
fractional
Let T_{n} be a bit-reveal algorithm for f_{n}, and

$$
\delta(n):=\max _{i} \delta_{i}=\max _{i} \mathbb{E}\left[X_{i}(\tau)^{2}\right] .
$$

Theorem: If $\delta \rightarrow 0$, then f_{n} is noise sensitive.

The faster $\delta \rightarrow 0$, the more noise sensitive it is!

The $\frac{\text { Schramm }}{\text { Steif }}$ Theorem

Let $f_{n}:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be a sequence of Booelan functions.
fractional
Let T_{n} be a bit-reveal algorithm for f_{n}, and

$$
\delta(n):=\max _{i} \delta_{i}=\max _{i} \mathbb{E}\left[X_{i}(\tau)^{2}\right] .
$$

Theorem: If $\delta \rightarrow 0$, then f_{n} is noise sensitive.

The faster $\delta \rightarrow 0$, the more noise sensitive it is!

Sending $\varepsilon \rightarrow 0$

Sending $\varepsilon \rightarrow 0$

Let $u_{\varepsilon}(x):[-1,1]^{n} \rightarrow \mathbb{R}=$ best alg when $x(0)=x$.

Sending $\varepsilon \rightarrow 0$

Let $u_{\varepsilon}(x):[-1,1]^{n} \rightarrow \mathbb{R}=$ best alg when $x(0)=x$.

In which direction to go?

Sending $\varepsilon \rightarrow 0$

Let $u_{\varepsilon}(x):[-1,1]^{n} \rightarrow \mathbb{R}=$ best alg when $x(0)=x$.

In which direction to go?

Sending $\varepsilon \rightarrow 0$

Let $u_{\varepsilon}(x):[-1,1]^{n} \rightarrow \mathbb{R}=$ best alg when $x(0)=x$.

In which direction to go?

Sending $\varepsilon \rightarrow 0$

Let $u_{\varepsilon}(x):[-1,1]^{n} \rightarrow \mathbb{R}=$ best alg when $x(0)=x$.

In which direction to go?

Sending $\varepsilon \rightarrow 0 \quad\left(u_{s}(x)=\min _{i} \frac{u_{\varepsilon}\left(x+\varepsilon \varepsilon_{i}\right)+u_{c}\left(x-\varepsilon \varepsilon_{i}\right)}{2}+\varepsilon^{2}\right)$

Sending $\varepsilon \rightarrow 0 \quad\left(u_{c}(x)=\min _{p} \frac{u_{(}\left(x+\varepsilon(\varepsilon)+u_{c}(x-\varepsilon \varepsilon)\right.}{2}+\varepsilon^{2}\right)$

Theorem: Define $u=\lim _{\varepsilon \rightarrow 0} u_{\varepsilon}$. Then

$$
\min _{i} \frac{\partial^{2} u}{\partial x_{i}^{2}}+2=0
$$

- "Axis-aligned Laplacian" equation.

Sending $\varepsilon \rightarrow 0 \quad\left(u_{s}(x)=\min _{i} \frac{u_{\varepsilon}\left(x+\varepsilon \varepsilon_{i}\right)+u_{c}\left(x-\varepsilon \varepsilon_{i}\right)}{2}+\varepsilon^{2}\right)$

Theorem: Define $u=\lim _{\varepsilon \rightarrow 0} u_{\varepsilon}$. Then

$$
\min _{i} \frac{\partial^{2} u}{\partial x_{i}^{2}}+2=0
$$

- "Axis-aligned Laplacian" equation.
- $u(0)$ might tell us something about δ !
- Solving a PDE can give us noise-sensitivity.

The OR function

OR: $f(x)=1$ if any $x_{i}=1$.

The OR function

OR: $f(x)=1$ if any $x_{i}=1$.

- Classical alg: just query bits.
$\mathbb{E}[$ runtime $]=2$.

The OR function

OR: $f(x)=1$ if any $x_{i}=1$.

- Classical alg: just query bits.
$\mathbb{E}[$ runtime $]=2$.
- Fractional alg: ???

The OR function

OR: $f(x)=1$ if any $x_{i}=1$.

The OR function

OR: $f(x)=1$ if any $x_{i}=1$.

The big question

The big question

- Is $P=N P$?

The big question

-TSP-NP?

- Is there a class of functions f such that

$$
\lim _{n \rightarrow \infty} \liminf _{\varepsilon \rightarrow 0} \frac{\delta(f, \varepsilon)}{\delta(f, 1)}=0 ?
$$

(specifically, what about percolation?)

Overview

- Boolean functions, noise-sensitivity, revealment algorithms
- Fractional algorithms can do better

- A limiting partial differential equation

$$
\min _{i} \frac{\partial^{2} u}{\partial x_{i}^{2}}=-2
$$

Also a tree

