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Noise sensitivity
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Boolean functions is called “noise sensitive” if for all € > 0,
111—{?0 E[fn() ()] =0,

where x is random and y is an &-noising of x.



Noise sensitivity

Definition: A sequence f,:{—1,1}" - {—1,1} of balanced

Boolean functions is called “noise sensitive” if for all € > 0,
AI_EEO E[fn() (] =0,

where x is random and y is an &-noising of x.

Is percolation crossing noise sensitive?

If so, how fast can € go to O with n?
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Fractional query algorithms

Input x(1) is a stochastic process!
x(0)
x(1)
x(2)

x(T) 1

6; = P[bit i is queried] = E[x;(7)?]
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Fractional query algorithms

Let € > 0.

x(0)

Can only do this if x;(t) € (—1,1).
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Where is the unknown input?

Individual bits perform random walks

In the end,
X() € {—1,1}"
This is the “final input”.
The current value gives a hint to the future:

1+ X;(t)

P[X;(c0) =11 X;(t) ] = >
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Comparing with classical algorithms

For classical decision trees,

6; = P[bit i is queried] = E[X;(7)?].

We define 0; similarly for fractional algorithms.

. . ~2 2
Fact: min §; < min §; XxTeE X xwes

e—algs 2¢-algs

X —28 X x + 2¢
X—& x+¢

Why this cost?

Fact: E[X;(7)%] = E[X;], = *E[#times i was chosen]
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l



u.(x + €e;) + us(x — €e;)
+ &2

Sendinge - 0 (ww=mn 2



us(x + €e;) + ug(x — €e;) 2)
+ &

Sendinge > 0 (wco=mp 2

Theorem: Define u = lir% U.. Then
E—

- 0%u
min— +2 = 0.

i 0x;

- “Axis-aligned Laplacian” equation.



u(x +ee;) + u.(x — €e;)

Sendinge > 0 (wco=mp 2

Theorem: Define u = lir% U.. Then
E—

- 0%u
min— +2 = 0.

i 0x;

- “Axis-aligned Laplacian” equation.

- u(0) might tell us something about 4!

- Solving a PDE can give us noise-sensitivity.

+ ez)
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OR: f(x) =1ifanyx; = 1.

- Classical alg: just query bits.

- Fractional alg: ??7?
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The big question
s N e b e

* |s there a class of functions f such that

o(f,¢)

,
lim hrgn—>lonf6(f 1) e

(specifically, what about percolation?)



Overview

* Boolean functions, noise-sensitivity,

revealment algorithms

* Fractional algorithms can do better

* A limiting partial differential equation
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House Person Tree

https://practicalpie.com/house-person-tree-test/



Also a tree






