

Brownian motion can feel the shape of a drum

Renan Gross, Weizmann Institute of Science

THE PROBLEM

Inspired by Benjamini, Hollander and Keane, we ask:

Q: Let X_t be a stochastic process on \mathbb{T}^d , let A be a set, and let f be the indicator of A.

Can A be completely reconstructed from the (infinite) trace $f(X_t)$?

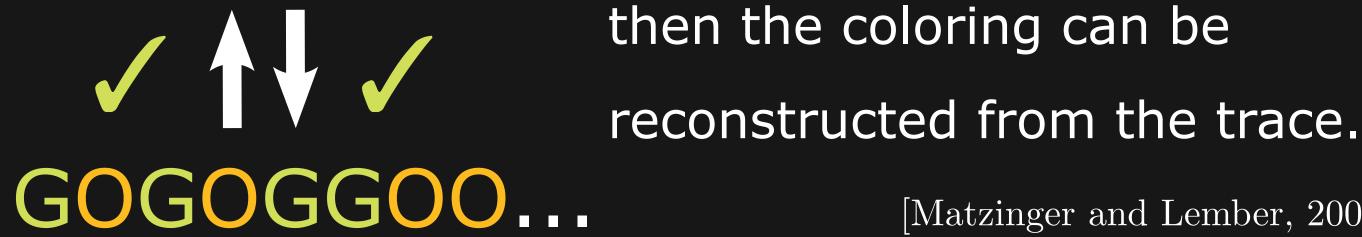
Color the cycle of length ℓ with two colors: G and O.

DISCRETE CASE

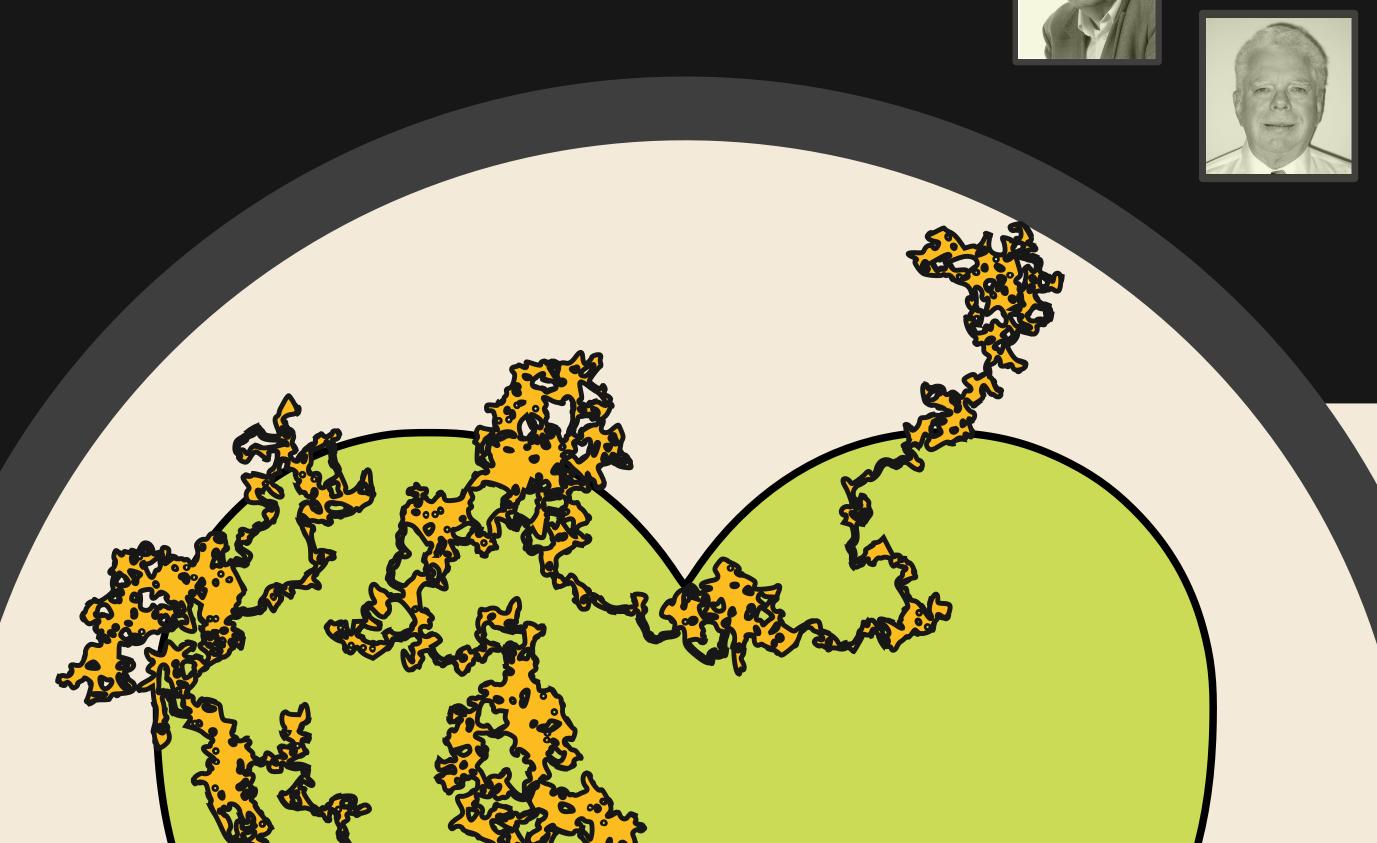
If the steps have distribution γ and the Fourier coefficients

$$\{\hat{\gamma}(k)\}_{k=0}^{\ell-1}$$

are all distinct,



[Matzinger and Lember, 2006]



CONTINUOUS CASE

Let X_t be an infinitely divisible process on \mathbb{T}^d whose increments D_t satisfy $D_t(x) = \beta_t \delta(x) + (1 - \beta_t) \gamma_t(x),$

where δ is the Dirac distribution and γ_t is an L^2 probability density function.

Theorem: If the Fourier coefficients $\{\hat{\gamma}_{t_0}\}_{k\in\mathbb{Z}^d}$ are all distinct and non-zero for some t_0 , then A can be reconstructed from $f(X_t)$.

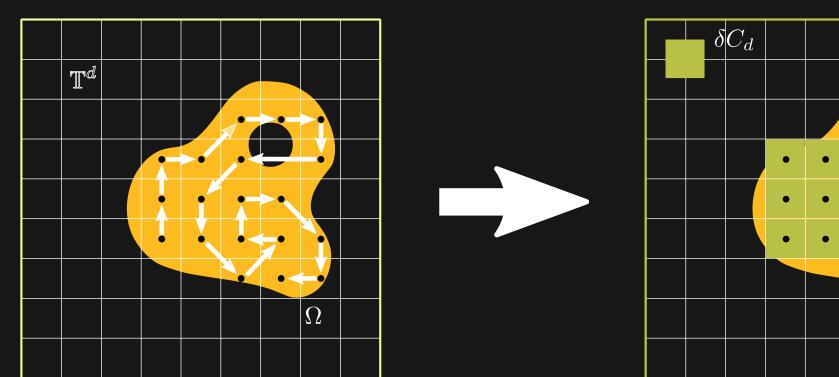
PROOF SKETCH

From the known temporal correlations

$$T_n(\mathbf{t}) = \mathbb{E}\left[f(X_0) f(X_{t_1}) \cdots f(X_{\sum_{i=1}^n t_i})\right]$$

we can learn the spatial correlations

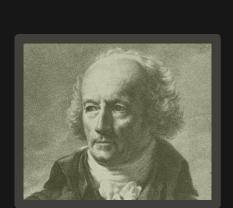
$$S_n(\mathbf{y}) = \int_{\mathbb{T}^d} f(x) f(x+y_1) \cdots f\left(x+\sum_{i=1}^n y_i\right) dx$$



- VANDERMONDE

By applying Parseval's theorem on T_n , we can learn

$$\sum_{\mathbf{k} \in \mathbb{Z}^{nd}} \left(\prod_{i=1}^{n} \hat{\gamma}_{t_i} \left(k_i \right) \right)^m \hat{S} \left(\mathbf{k} \right)$$



Now use the following lemma:

Lemma: Let $V_{ij}=z^i_j,$ where $z_n \in \ell^2 \to 0, z_n \neq 0$.

If $x \in \ell^2$ s.t. Vx = 0,

then x = 0.