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Introduction

Quasispecies are a cloud of genotypes that appear in a
population at mutation-selection balance.
(J.J Bull et al, PL0oS 2005)

- Theoretical model (equations and assumptions), with
experimental support by RNA viruses.
- Usually applied when mutation rates are high.

- GARD composomes replicate with relatively low fidelity
(high mutation rate).

Could they show similar dynamic behavior?
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Quasispecies model

 Basically a population model
 n different genotypes / identities

SOk

 Their relative concentration In
the environment Is denoted by
the fraction x;.

« Goal: To find out how X
behave as a function of time.




Quasispecies model

« Each one replicates at a certain rate — how many

offspring it has per unit time.

e Some repllcate faster than others. ,
/ N

O=g3 U=

\ a

 This is called the replication rate, denoted A,

. Ai _ number of of fspring i

time




Quasispecies model

« However, replication Is not exact. Sometimes, the
offspring Is of another genotype.

* The chance that a genotype | replicates into
genotype I Is denoted Qj;

—05
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Quasispecies model

» We can put everything in a matrix, called the
transition matrix, Q.

From

©0 &H %

/0.5 01 0 0.7
& (02 05 0 02
Elo2 02 1 o0

Y \01 02 0 0.1

« The main diagonal is faithful self replication.




Quasispecies model

 How can we find out Q and A?

« Assume that we are dealing with RNA
sequences of length v:

— There is a single genotype with highest
replication rate: the master sequence
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Quasispecies model

 How can we find out Q and A?

« Assume that we are dealing with RNA
sequences of length v:

— There Is a single genotype with highest 11
replication rate: the master sequence 1

. L 1520
— Single digit replication: 0<g<1 d

« What Is the chance for error-less replication?

— All mutations of the master sequence replicate
slower according to the Hamming distance.
« Effectively, many genotypes are grouped together.
« Q and A are built only from g and v.
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Quasispecies model
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Quasispecies model
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Quasispecies model

« q=1 => exactreplication
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Quasispecies model

« q=1 => exactreplication
® q — O 9
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Quasispecies model

« q=1 => exactreplication
. q=0 = exact complimentary replication

17



Quasispecies model

=1 =» exactreplication
—0 = exactcomplimentary replication

=05=>

18



Quasispecies model

=1 =» exactreplication
—0 = exactcomplimentary replication
all data Is lost.

g=05=>
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Quasispecies model

g=1 => exactreplication
qg=0 = exactcomplimentary replication
1=05 all data Is lost.

Starting at g = 1, lowering it results in loss of
the master sequence as the most frequent
genotype.
— (requires lack of back mutation)

ERROR CATASTROPHE

RNA viruses may be fought by bringing them to
error catastrophe. 20



Quasispecies model

 Under constant population assumptions, the
transition matrix Q and the replication rates A are
all that are needed In order to find out the

concentration dynamics.
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Quasispecies model

« The Eigen equation (after Manfred Eigen):

dxl

dt (A Qu o E(t) Xi T ZA Ql]x]

j#i
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Quasispecies model

« The Eigen equation (after Manfred Eigen):

dxl
dt (A Qu o E(t) Xi t ZA Ql]x]
JE!

* Where E Is the “average excess rate”

n
E(t) == Z Al-xl-
=1
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Quasispecies model

* Q and A can be combined into one matrix W,
which tells how much of each genotype is
produced per unit time.

W=aQ:-diag(A4)
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Examples: 1 0.001 0.001 0.01
w—| 01 2 0.01 0.01
0.001 0.1 3 0.01

0.001 0.001 0.001 4

» Initial conditions: X, =1, all others are 0.
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Examples: 1 0.001 0.001 0.01
0.1 2 0.01 0.01
0.001 0.1 3 0.01
0.001 0.001 0.001 4

» Initial conditions: x, = 1, all others are 0.

W =

1
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Time evolution of quasispecies
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Examples: 1 0.001 0.001 1
| 01 2 0.01 1
W=10001 o1 3 1
0.001 0.001 0.001 4

» Initial conditions: X, =1, all others are 0.
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Examples: 1 0.001 0.001 1
0.1 2 0.01 1
0.001 0.1 3 1
0.001 0.001 0.001 4

» Initial conditions: x, = 1, all others are 0.

W =

1

0.9F

Time evolution of quasispecies

dyna
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|
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I
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Time evolution of quasispecies dynamics Time evolution of quasispecies dynamics

‘J&MMA

BN =

« The most frequent genotype Is not
necessarily the one with highest A..

» The steady state population distribution Is
called the quasispecies.

— That means, a vertical slice

29
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RNA world

-
N

DNA/RNA/ Polymers =
Sequence
covalent bonds

Lipid world

omain)
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GAPN mndal I2rgded Autocatalysi

RNA world

-
N

DNA/RNA/ Polymers =
Sequence
covalent bonds

Segre and Lancet, EMBO Reports 1 (2000)

Elpld World Jomain)

2
NN NANT

©
@

Assemblies / Clusters /
Vesicles / Membranes =
Composition
non-covalent bonds
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GARD model (Graded Autocatalysis Replication Domain)

» Synthetic chemistry

» Kinetic model

» Catalytic network () of
rate-enhancement values

Segre, Ben-Eli and Lancet, Proc. Natl. Acad. Sci. 97 (2000)



GARD model (Graded Autocatalysis Replication Domain)

» Synthetic chemistry

» Kinetic model

» Catalytic network () of
rate-enhancement values

Rate enhancement

dni n; . I
j=1

Segre, Ben-Eli and Lancet, Proc. Natl. Acad. Sci. 97 (2000)




GARD model (Graded Autocatalysis Replication Domain)

» Synthetic chemistry

» Kinetic model
Homeostatic growth » Catalytic network () of
e rate-enhancement values

Fission / Split

‘ Rate enhancement

N

dn, _ k, pN —kbni)[1+ }@ j ( :1_@‘ Molecular repertoire

dt =

Segre, Ben-Eli and Lancet, Proc. Natl. Acad. Sci. 97 (2000)



Following a single lineage.
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GARD model (Graded Autocatalysis Replication Domain)

Following a single lincage.

V —p .1
X _A—O—=<g ¥ 15
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200 400 600 o ooo
Generation
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GARD model (Graded Autocatalysis Replication Domain)

Following a single lineage.

o o
o o

o
N
Compositional Similarity

Generation

o
N

0

Generation

Composome (compositional genome): a faithfully replicating
composition/assembly.

Compotype (composome type): a collection of similar composomes.

Molecular Compotype: the center of mass of the compotype cloud, treated as
a molecular assembly.

3/



GARD model (Graded Autocatalysis Replication Domain)

& —(k, N —kbni)(“ 2Py —j] (i=1..Ng)

Idea: If we ignore the stochasticity inherent in the
model, then errorless-replication occurs
according to beta matrix eigenvectors.
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Moment Algebraux

« Multiplying a matrix by a vector gives another
vector

. (a11 a12) | (xl) . (a11x1 a12x2) . (}’1)
dz1 A2 X2 Az1X1 T d22X7 Y2

 An eigenvector is a vector x such that:
e A-x =X
— A Is called the eigenvalue.
— A\ may be complex, and so may the eigenvector.
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Moment Algebraux

e The Perron-Frobenius Theorem:

— A matrix with strictly positive entries contains a
maximal real eigenvalue.

— Its eigenvector Is real and non-negative. In fact, it’s
the only one with this property.

 As molecular assemblies must contain real non-
negative number of molecules, this looks
Interesting.

40



GARD and Quasispecies

* Do GARD population dynamics behave like the
quasispecies model?

e \What we would like to do:

— For each assembly, experimentally find out the
transition frequencies and replication rates

— In other words: find Q and A.
* Problem:

199

100) possible

— Ng =100, n.., = 100 =» There are (

assemblies ( ~4 - 10°%)

41



GARD and Quasispecies

 Solution: group some assemblies together and
treat them as one genotype.

» \We decided to group together by distances from
the eigenvector.

Ng space (simplified to 2d)

Molecule 2
N

o Eigenvector

42

Molecule 1



GARD and Quasispecies

* Problem: how do we sample such a large space?
» 30000 assemblies are randomly generated.

43



GARD and Quasispecies

* Problem: how do we sample such a large space?

» 30000 assemblies are randomly generated.

— By filling up assemblies until they reach n_,.
« Assemblies generated this way are far from the target.

43



GARD and Quasispecies

* Problem: how do we sample such a large space?

» 30000 assemblies are randomly generated.
— By filling up assemblies until they reach n_,.
« Assemblies generated this way are far from the target.

— By starting at eigenvector and random walking.
« Assemblies generated this way are close to the target.

43
http://www?2.ess.ucla.edu/~jewitt/oort2-random.html



GARD and Quasispecies

* Problem: how do we sample such a large space?

» 30000 assemblies are randomly generated.
— By filling up assemblies until they reach n_,.
« Assemblies generated this way are far from the target.

— By starting at eigenvector and random walking.
« Assemblies generated this way are close to the target.

« Sampling is still a problematic issue.

43
http://www?2.ess.ucla.edu/~jewitt/oort2-random.html



GARD and Quasispecies

« Each assembly is split and its offspring grown.

— Q = to where did the assembly split?
— A =how long did it take the offspring to grow?

Offspring

Molecule 2

Random assembly

44

Molecule 1



GARD and Quasispecies

« Example of a transition matrix:

45



GARD and Quasispecies

* Now all that is left Is to compare population
model with quasispecies shell model.

 The population runs were already performed by
Omer: a constant population Moran-process.

46



GARD and Quasispecies

e There Is a constant number of assemblies In a
population.
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e There Is a constant number of assemblies In a
population.

« Each turn, a single molecule is added.

« Upon split, the parent as well as a random
assembly are replaced with the two children.
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GARD and Quasispecies

e There Is a constant number of assemblies In a
population.

« Each turn, a single molecule is added.

« Upon split, the parent as well as a random
assembly are replaced with the two children.

&

£
$\®

<5
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GARD and Quasispecies

e There Is a constant number of assemblies In a
population.

« Each turn, a single molecule is added.

« Upon split, the parent as well as a random
assembly are replaced with the two children.

D 68 .



GARD and Quasispecies

 The population simulation goes into steady state,
concerning the frequencies of compotypes (as
shown by Omer)

o
o

| | | |
=== C1 data
=== C2 data
=== C3 data
oY,y

o
(¢)
I

©
~

o
w

o
R

o
=

Compotype population fraction

0 o L L L L L L L L L
O 05 1 15 2 25 3 35 4 45 5
Time [10* splits]

 The distribution of distances from the
elgenvector was calculated for the population
steady state, and compared with prediction.
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GARD and Quasispecies
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GARD and Quasispecies

« How do we know if we got a good match?

» Two metrics were used:
— Expected distance:

n
E = Z dl-xl-
=1

— Pearson correlation — do the troughs and hills go up
and down at the same time for both population and
prediction?

50



GARD and Quasispecies

 EXxpected distances
« R2=0.52, slope = 0.83

70

L £ un o
(== (= = (==
| | [ T
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GARD and Quasispecies

e Correlations
« About half are above 0.8

Histogram of correlations between guasi and population models
25 T T . T T T Curnulative histogram of correlations between gquasi and population models

Fercentage
o o o o o
E =Y m (s3] it [mn]
T T T T T
1 1 1 1 1

=
L
T
1

a1r 1

0.2 a 0.2 0.4 0.6 0.8 1 1.2

0.2 ] 02 0.4 0.6 0.8 1 1.2 .
Pearson correlation value

Pearson correlation value
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GARD and Quasispecies

Ok, Is this good?
« We can change the target of the distance
measurement, to see If we get a better result.

« Two more assemblies were tried:
— The most common compotype
— A random assembly.

53



GARD and Quasispecies

* The most common compotype Is very similar to
the eigenvector.

Curmhist of similarty of eigenvector to mast frequent compotype
1 1 1

0.9 F

0.6

=2 o
om ]
T T

Fercentage
O
m

a 0.1 0.2 03 04 05 0k 07 s 08 1
similanty 54



GARD and Quasispecies

« However, they are not exactly the same; often the
eigenvector Is larger (larger Euclidean norm)
— This means it is less homogenous than compotypes
 Not surprising.

« We can envision a similarity cone:

O < Eigenvector

Molecule 2

@ . Compotype

55

Molecule 1



GARD and Quasispecies

 Results are better for compotypes, and worse for
random. R?=0.64, slope = 0.89

Fopulation model - expected distance

| | | | | | | |
a 10 20 30 40 50 B0 70 80
Cluasi model - expected distance
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GARD and Quasispecies

e Correlations
 About 0.7 are above 0.8

0 Histogram of correlations between guasi and population models Cumulative histogram of correlations between quasi and population models
T T T T T T 1
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Pearson correlation value
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GARD and Quasispecies

* There Is a dependence on the number of
compotypes

Fopulation model ve gquasispecies model expected distances

100

+ | compatype
90 + Y compotypes
*+  Jand above compotypes

g0

O

B0

A0 F

40

30

20F

Fopulation model - expected distance
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D 1 1 | | 1 1 |
0 10 20 30 40 50 B0 70 a0 a0 100
Cluasi model - expected distance




GARD and Quasispecies

e The future...?

— Better sampling
— More rigorous analysis of number of compotypes

59



GARD and Quasispecies

The future...?

— Better sampling

— More rigorous analysis of number of compotypes
— Dynamics, and not just steady state

Quasispecies dynamics, seed=50 Quasispecies dynamics, seed=90
1 r r r T 0.2 r r r r
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Error Catastrophe in GARD

 For sequential information carriers, g acts as a
“faithful replication” parameter.

* Does anything like this exist for GARD?

“Idea: If we ignore the stochasticity inherent in the
model and solution, then errorless-replication
occurs according to beta matrix eigenvectors.”

-R.G

 Forward and backward accretion (k; and k,) are
responsible for much of the stochasticity.
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Error Catastrophe in GARD

« What happens if you lower k; ?

 Run single lineage simulation with different k;
values.

Sirilarity of most frequent compotype with eigenvector

Similarity of most frequent compotpye with eigenvector, average seeds=1-1000
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Error Catastrophe in GARD

* Since the most common compotype frequency
decreases drastically, there is a high increase In
drift > no composomes.

» Conclusion: k; and k, affect replication fidelity.
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Error Catastrophe in GARD

« What happens in quasispecies model?

— We obtained Q and A for lower k; values.

* Two types of results:
« Seed =12 Seed =15

08

0.7F

04}

02F

08

06

1 L 1 1 1
20 40 &0 gl 100 120
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Error Catastrophe in GARD

Effect of kf on final quasispecies population, seed=12

Regular Kf
Decreased ki

05t

FPercentage of population

1 L 1 | 1
a 20 40 B0 a0 100
Distance from target

]
120

Fercentage of population

05t

Effect of kf on final quasispecies population, seed=15

— K01
— KF=0.005

20 40 5O 80 100 120
Distance from target

 The difference seems to relate to the size of the

compotype.
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Error Catastrophe in GARD

« Random drift assemblies are homogenous -
they have small Euclidean norm.

— X ==T100, 0, 0, 0, 0, 0,...,0] &
1X| = V1002 = 100
- X==[1111..1]=>
X|=vV1+1+1..=+100=10
 Distances to compotypes / eigenvectors then

depend mostly on the size of the compotype /
elgenvector.
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Error Catastrophe in GARD

* Indeed, not that bad correlation.
—y =1.041x — 9.89; R2 =10.9899

100 i |
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Error Catastrophe in GARD

« Ksand K, are similar to g

« Of course, there are differences.
— No complementary replication
— In this case, what is the master sequence?
— Back mutation?
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Conclusions

* GARD constant population models give distance
distributions that are similar to those generated
by the quasispecies model.

* GARD replication fidelity shows sensitivity to k;
and k.. Low k; results in loss of compotype
dominance, just like low g-0.5 results in loss of
master sequence.

. Compotypes/composomes behave
similarly to quasispecies.
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