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This presentation shows explicit images of graphs.

Viewer discretion is advised.
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Scenery reconstruction

Suppose we are given a graph G,
colored by some function f(x).
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on the trace of the random walk f(S;)?
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Scenery reconstruction

Question
Suppose we know G. Can we reconstruct the coloring f based only
on the trace of the random walk f(5;)?

Remarks:

e We are given an infinite random walk — reconstruction should
happen with probability 1
e Up to isomorphisms of the graph.

91919)
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The answer is known for a variety of Abelian Cayley graphs and
walks.

What about the n-dimensional Boolean hypercube?
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The answer is known for a variety of Abelian Cayley graphs and
walks.

What about the n-dimensional Boolean hypercube?

Vote?
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The way to do this is to show that there are two colorings which
yield the same distribution of sceneries.

Example:

o
The process f(S;) is Bernoulli 1ID with success probability 1/2!



Locally biased functions

So we defined locally biased functions, and started investigating
them in their own right.

Definition

Let G be a graph. A Boolean function f : G — {—1,1} is called
locally p-biased, if for every vertex x € G we have

H{y ~x; fy) =1} _
deg(x) P

In words, f is locally p-biased if for every vertex x, f takes the

value 1 on exactly a p-fraction of x's neighbors.
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So we defined locally biased functions, and started investigating
them in their own right.

Definition

Let G be a graph. A Boolean function f : G — {—1,1} is called
locally p-biased, if for every vertex x € G we have

H{y ~x; fy) =1} _
deg(x) P

In words, f is locally p-biased if for every vertex x, f takes the

value 1 on exactly a p-fraction of x's neighbors.

Existence of two non-isomorphic locally biased functions implies
that the scenery reconstruction problem cannot be solved.
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Theorems

We found:

Theorem (characterization)

Let n € N be a natural number and p € [0,1]. There exists a
locally p-biased function f : {—1,1}" — {—1,1} if and only if
p = b/2k for some integers b > 0, k > 0, and 2% divides n.

Theorem (size)
Let n be even. Let Bl”/2 be a maximal class of non-isomorphic
locally 1/2-biased functions, i.e every two functions in B] /o are

non-isomorphic to each other. Then )Bf/z‘ > C2\/E/n1/4, where

C > 0 is a universal constant.



Proof of theorem 1
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10



Proof of theorem 1

We start with locally 1/n-biased functions.

10



Proof of theorem 1

We start with locally 1/n-biased functions.

O @

10



Proof of theorem 1

We start with locally 1/n-biased functions.

O O

A tile for n = 4.
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Proof of theorem 1

We start with locally 1/n-biased functions.

<R

A tile for n = 4. A tile for n — 8.
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Solution: find a "half-tiling" .
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Proof of theorem 1

Solution: find a "half-tiling" .

We have a 1/n tiling!
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Proof of theorem 1

To get m/n instead of 1/n, combine several disjoint tilings.

12



Proof of theorem 1

Where do we get half-tilings from? Perfect codes.
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Proof of theorem 1

Where do we get half-tilings from? Perfect codes.

Where do we get disjoint half-tilings from? Hamming perfect
codes.
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A word on the other direction

Let x be a uniformly random element of the cube. Then f(x) =1
with probability //2", where | = |{x € {-1,1}"; f(x) =1}
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A word on the other direction

Let x be a uniformly random element of the cube. Then f(x) =1
with probability //2", where | = |{x € {-1,1}"; f(x) =1}

Let y be a uniformly random neighbor of x. Then f(y) =1 with
probability p by definition.

Since both x and y are uniform random vertices,
P(f(x)=1) =P(f(y) =1)

Denoting p = m/n for some m € {0, 1, ..., n}, this gives

Writing n = ¢c2* gives the desired result. 14
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Proof of theorem 2

h(x1, x2,x3,X3) =

8\ X1,X2,X3,X4) = X1 X2 1
( » X245 X3, ) 5 (X1X2 + XoX3 — X3X4 + X1X4)

ii5)



Proof of theorem 2
[ )

gn(X1,- -y Xn) = X1+ Xn/2 hy =

k-1 k—1
h (H,-:o X1+44is- -5 ] ]i—o X4+4i)
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Proof of theorem 2

Fact
Let f; : {—1,1}" — {—1,1} be locally 1/2-biased functions for
i =1,2 where ny + np = n. Then

f(x) = (X1, Xn ) 2 (Xny 41, -y Xn)
is a locally 1/2-biased function on {—1,1}".

We can then build up locally 1/2-biased functions from the
building blocks hg, h1, ... and go, g2, &4, - - --
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e Every time we pick hg, we use 4 bits.
e Every time we pick hi, we use 8 bits.
e Every time we pick hy, we use 12 bits.

The rest of the bits are filled with gg.
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Proof of theorem 2

e Every time we pick hg, we use 4 bits.
e Every time we pick hi, we use 8 bits.
e Every time we pick hy, we use 12 bits.

The rest of the bits are filled with g.

The # of different combinations is the same as the # of solutions
to:
4a; +8ar + -+ 4dkay <n
which is at least
C-2vVn/pt/4
for some constant C.
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The end of the presentation

e There are other methods of showing that cube scenery cannot
be reconstructed.

e But locally biased functions are still cool!

e Try them out for your favorite graphs!



