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Warning

This presentation shows explicit images of graphs.

Viewer discretion is advised.
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Scenery reconstruction

Suppose we are given a graph G ,

colored by some function f (x).
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An agent performs a simple

random walk St on the graph.

Reported scenery:
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Scenery reconstruction

Question

Suppose we know G. Can we reconstruct the coloring f based only

on the trace of the random walk f (St)?

Remarks:

• We are given an infinite random walk → reconstruction should

happen with probability 1

• Up to isomorphisms of the graph.
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Scenery reconstruction

The answer is known for a variety of Abelian Cayley graphs and

walks.

What about the n-dimensional Boolean hypercube?

Vote?
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Boolean scenery

The way to do this is to show that there are two colorings which

yield the same distribution of sceneries.

Example:

The process f (St) is Bernoulli IID with success probability 1/2!
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Locally biased functions

So we defined locally biased functions, and started investigating

them in their own right.

Definition

Let G be a graph. A Boolean function f : G → {−1, 1} is called

locally p-biased, if for every vertex x ∈ G we have

|{y ∼ x ; f (y) = 1}|
deg(x)

= p.

In words, f is locally p-biased if for every vertex x , f takes the

value 1 on exactly a p-fraction of x ’s neighbors.

Existence of two non-isomorphic locally biased functions implies

that the scenery reconstruction problem cannot be solved.
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Locally biased functions

Locally biased functions can be defined for any graph.
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Theorems

We found:

Theorem (characterization)

Let n ∈ N be a natural number and p ∈ [0, 1]. There exists a

locally p-biased function f : {−1, 1}n → {−1, 1} if and only if

p = b/2k for some integers b ≥ 0, k ≥ 0, and 2k divides n.

Theorem (size)

Let n be even. Let Bn
1/2 be a maximal class of non-isomorphic

locally 1/2-biased functions, i.e every two functions in Bn
1/2 are

non-isomorphic to each other. Then
∣∣∣Bn

1/2

∣∣∣ ≥ C2
√
n/n1/4, where

C > 0 is a universal constant.
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Proof of theorem 1

We start with locally 1/n-biased functions.

A tile for n = 4.

A tile for n = 8.
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Proof of theorem 1

Solution: find a “half-tiling”.

We have a 1/n tiling!
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Proof of theorem 1

To get m/n instead of 1/n, combine several disjoint tilings.
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Proof of theorem 1

Where do we get half-tilings from? Perfect codes.

Where do we get disjoint half-tilings from? Hamming perfect

codes.
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A word on the other direction

Let x be a uniformly random element of the cube. Then f (x) = 1

with probability l/2n, where l = |{x ∈ {−1, 1}n ; f (x) = 1}|

Let y be a uniformly random neighbor of x . Then f (y) = 1 with

probability p by definition.

Since both x and y are uniform random vertices,

P(f (x) = 1) = P(f (y) = 1)

Denoting p = m/n for some m ∈ {0, 1, . . . , n}, this gives

p =
l

2n
=

m

n
.

Writing n = c2k gives the desired result.
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Proof of theorem 2

g(x1, x2, x3, x4) = x1x2

gn(x1, . . . , xn) = x1 · · · xn/2

h(x1, x2, x3, x4) =
1
2 (x1x2 + x2x3 − x3x4 + x1x4)

hk =

h
(∏k−1

i=0 x1+4i , . . . ,
∏k−1

i=0 x4+4i

)
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Proof of theorem 2

Fact

Let fi : {−1, 1}ni → {−1, 1} be locally 1/2-biased functions for

i = 1, 2 where n1 + n2 = n. Then

f (x) = f1(x1, ..., xn1)f2(xn1+1, ..., xn)

is a locally 1/2-biased function on {−1, 1}n.

We can then build up locally 1/2-biased functions from the

building blocks h0, h1, . . . and g0, g2, g4, . . ..

• Every time we pick h0, we use 4 bits.

• Every time we pick h1, we use 8 bits.

• Every time we pick h2, we use 12 bits.

• . . .

• The rest of the bits are filled with gk .
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Proof of theorem 2

• Every time we pick h0, we use 4 bits.

• Every time we pick h1, we use 8 bits.

• Every time we pick h2, we use 12 bits.

• . . .

• The rest of the bits are filled with gk .

The # of different combinations is the same as the # of solutions

to:

4a1 + 8a2 + · · ·+ 4kak ≤ n

which is at least

C · 2
√
n/n1/4

for some constant C .

17



The end of the presentation

• There are other methods of showing that cube scenery cannot

be reconstructed.

• But locally biased functions are still cool!

• Try them out for your favorite graphs!
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